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ABSTRACT

We address the problem of pose estimation in videos. The part

detectors play important roles, but traditional template-based

detectors (e.g. Histogram of Gradient, HoG) fail at pose esti-

mation due to the high variability in appearance. We present

an adaptive representation of appearance and shape for artic-

ulated human body. The full representation of human body

is based on the flexible mixture-of-parts model. We train a

Naive Bayes classifier to obtain a confidence score of estimat-

ed pose by the basic mixture model, and based on the confi-

dence we learn an instance-specific appearance model. For

between-frame consistency, we design a time-efficient energy

function for motion cues instead of complex motion models.

We incorporate these models into a framework that allows for

efficient inference. Quantitative evaluation of pose estimation

conducted on two video datasets demonstrates the effective-

ness of the proposed method.

1. INTRODUCTION

Human pose estimation is an important task in computer vi-

sion area, and the principle purpose of this task is to locate

each body part and obtain the body configuration. Pose esti-

mation holds potential to impact many applications that wide-

ly range from image understanding to action recognition and

human computer interaction. However, this problem is chal-

lenging, because of the variations of body shape, pose and

appearance. Also, human body is articulated, and there are

many degrees of freedom to be estimated.

A classic approach for pose estimation is the pictorial

structure model [1, 2], as shown in Fig. 1(a). The whole body

is decomposed into local body parts, and each pair of parts

is connected by a “spring” as the geometric constrain. The

inference of the method is complicated and time-consuming,

since a large number of rotated and foreshortened part tem-

plates need to be searched to obtain the best configuration.

Yang et al. [3] proposed a flexible mixture-of-parts model

with non-oriented parts, as shown in Fig. 1(b). The model
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Fig. 1. Models for human pose estimation. (a) is the classic

pictorial structure model, (b) is the flexible mixture-of-parts

model [3], and (c) is our model for video sequences.

can capture local appearance and body geometry, and can

handle rotation and foreshortening implicitly.

In order to deal with the changes in body pose and ap-

pearance, a large number of training samples are required for

better performance. Pishchulin et al. [4] explicitly control

pose and shape variations, and learn a general model. Yang et

al. [3] employ multiple components for each parts. The effec-

tiveness of the general model is validated. However, instance-

specific appearance (e.g. color of clothing) can be beneficial

to pose estimation, and this specific features are discarded by

the general models. The specific features are learned and used

for pose estimation in this paper.

Temporal coupling of limb positions is used to reduce

search space of body configuration by Ferrari et al. [5]. Sapp

et al. [6] proposed a model with edges within and between

frames, involving inference over an ensembles of six mod-

els. We adopt a simple function of part displacement as the

temporal model, and the inference is efficient.

Our model is shown in Fig. 1(c). All the edges of solid

lines are modeled as pairwise relationships, and the dotted

lines are only for displaying purpose. The representation is

based on the flexible mixture-of-parts model in Fig. 1(b). The

full model includes the general model, the instance-specific

model, and the simplified temporal model.

This work contributes in two aspects. First, we propose an

instance-specific model and a temporal model, and integrate

them with the general model into a unified framework that

allows for efficient inference and learning. Second, instead of

modeling the motion cues as a generative motion model, we
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employ a discriminative function to restrict the displacement

of body parts, and the effectiveness is validated.

Related work. Various features are employed in previous

work, such as foreground and background color model [5, 7].

Another kind of color model is color histogram. Contours are

used in [8], and descriptor of gradient is applied in [9]. HoG

is used for pose estimation in [3].

Temporal limb coupling is used for search space reduction

in [5], in which they proposed an integrated spatio-temporal

model covering multiple frames. Sapp et al. [10] proposed

adaptive pose prior for efficient inference. The stretchable

model [6] builds pairwise relationships between frames, and

then is decomposed into an ensemble of six models which

enable tractable inference and learning.

2. MODEL

The model is shown in Fig. 1(c), and it is a tree structure. The

child parts are independently placed in a coordinate system

defined by their parent. The solid lines represent pairwise re-

lationships within and between frames. The dotted lines show

the edges that are not modeled to avoid intractable inference.

Assume there is a K-part model and a sequence of T -

frame images from a video. We use superscripts to denote

frames t ∈ {1, ..., T}, and subscripts to denote body parts

i ∈ {1, ...,K}. Given an image It of the sequence, we write

lti = (x, y) for the pixel location of part i. As proposed by

[3], we employ the same approach and buildmi ∈ {1, ...,M}
components for part i, where mi is an indication variable that

determines the type of part i. To encode the spatial structure

of the model, let G = (V,E) be a tree-structured relational

graph, where nodes V represent all K parts, and edges E

specify pairwise relationships of the nodes.

We would like to score each possible part configuration

at the location lti . By maximizing the scores, the model can

obtain the best configuration. The score we want to maximize

for the full model is written as:

S(It, l,m, t) =
∑

i∈V

φi+Ω(m)+
∑

ij∈E

ψij+
∑

i∈V

ϕ
t−1,t
i , (1)

where m indicate the types of parts. Ω(m) is score of the part

co-occurrence model, and
∑

ij∈E ψij is score of the defor-

mation model [3].
∑

i∈V φi is score of our appearance mod-

el, and
∑

i∈V ϕ
t−1,t
i is score of the temporal model. These

models are detailed as follows.

The global consistency is broken down into pairwise con-

sistency. The co-occurrence model in (1) is composed of local

and pairwise score [3]:

Ω(m) =
∑

i∈V

bmi

i +
∑

ij∈E

b
mi,mj

ij , (2)

where mi ∈ {1, ...,M} is the type indicator for part i, the

parameter bmi

i represents the score of a particular component

assignment for part i, and b
mi,mj

ij denotes the score of co-

occurrence of part i and part j.

The score of the deformation model is controlled by the

spring models and the relative displacements of parts. The

score of deformation model [3, 11] is formulated as follows:

∑

ij∈E

ψij =
∑

ij∈E

λ
mi,mj

ij · ξ(lti − ltj) , (3)

where λ
mi,mj

ij is the parameter vector of a spring model gov-

erned by component mi of part i and mj of part j. The dis-

placement vector is written as ξ(lti − l
t
j) = [dx dx2 dy dy2]T ,

where dx = xti−x
t
j and dy = yti−y

t
j are the relative locations

of part i and j in frame t.

Both general features and instance-specific features con-

tribute to the final performance of pose estimation. One of

the most effective general descriptors is HoG [12]. However,

some useful information of part appearance has been ignored

in the general features. For example, if one wants to obtain

the part configurations of a person wearing a red suit, the red

color is beneficial to the pose estimation. This color feature

is instance-specific, and red color model can not be used to

estimate body pose for a person in yellow.

Based on the general and instance-specific features, the

score of appearance model
∑

i∈V φi in (1) can be expressed

as:

∑

i∈V

φi =
∑

i∈V

[(1− θ) · ωmi

i · φgi (I
t, lti)+

θ · µmi

i · φsi (I
t, lti)] ,

(4)

where φ
g
i (I

t, lti) is the general feature vector extracted at lo-

cation lti of the t-th frame image, φsi (I
t, lti) is the instance-

specific feature vector, ωmi

i and µmi

i are parameters of the

model template, and θ is the weight which controls the con-

tributions to the overall appearance model.

We apply HoG to form the general features, and use the

color models for the instance-specific features. The pixel-

level color model is constructed by logistic regression based

on samples of body part pixels and background pixels.

For a human body model, there are many parts and each

part can vary in appearance or shape, resulting in many de-

grees of freedom to be estimated. In the experiments, even

the similar images can produce totally different body config-

urations. With inspiration of tracking in videos, the estimated

positions of parts can be employed as a prior to parse human

body for the next frame. The score of temporal model in (1)

is defined as:

∑

i∈V

ϕ
t−1,t
i =

∑

i∈V

αi · (
1

1 + exp−βi·d
t−1,t

i

− 0.5) , (5)

where d
t−1,t
i is the distance between the relative position of

part i with respect to body center in frame t − 1 and that in
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frame t. The Euclidean distance is adopted for our applica-

tion. βi is the weight parameter for part i, and αi determines

the contribution of part i to the whole model.

Each term of the full model in (1) is either sum over V or

sum over E. We can rearrange the full model as:

S(It, l,m, t) =
∑

i∈V

(φi + ϕ
t−1,t
i + bmi

i )+

∑

ij∈E

(ψij + b
mi,mj

ij ) ,
(6)

where φi is shown in (4), ϕ
t−1,t
i is formulated in (5), ψij is in

(3), and bmi

i and b
mi,mj

ij are from (2).

The model involves a large number of parameters. We

will illustrate the details of inference and learning in the fol-

lowing Section 3.

3. INFERENCE AND LEARNING

In order to estimate body pose of different scales, we com-

pute the scores of the model all over the image pyramid. The

maximal score of S(It, l,m, t) over all scales and locations of

image pyramid is considered as a candidate, and then we trace

back the maximizing process and get the body configurations.

3.1. Inference

Dynamic programming [13] is an efficient and effective ap-

proach. To be specific, we compute the message from the

leaves and pass the maximal messages to their parents, and

finally to the root part. The message passed to part j from its

children is defined as:

MSj =
∑

k∈kids(j)

max
lk,mk

(MSk + φk + ψjk + ϕ
t−1,t
k +

bmk

k + b
mj ,mk

jk ) ,

(7)

where kids(j) denote all the child nodes of part j, and MSk is

the message passed to part k from its child nodes. For a leaf

part z, the kids(z) is an empty set.

Once the messages are passed to the root part (j = 1),

the score of the best configuration for root part at location l of

image It is:

scorer(I
t, l) = MS1 + φ1 + bm1

1 + ϕ
t−1,t
1 , (8)

where MS1 is the message passed to the root part. The best

detection of image It can be acquired by maximize the root

scores over all locations, while multiple detections (for mul-

tiple persons) can be obtained by thresholding the root scores

and applying non-maximum suppression [11].

To infer the body configurations from the root scores, we

can backtrack the procedure of dynamic programming to de-

termine the location and component of each part. In the ex-

periments, there is only one score for each location l anchored

with root part. If multiple detections at the same location are

required, one can use the approach of Park et al. [13].

3.2. Learning

As presented in Section 2, the model involves general features

which mainly describe body shapes and poses, and instance-

specific features which depict part appearance. The training

is divided into two stages.

We intend to estimate the parameters related to general

features first, so θ in (4) and α in (5) are set to 0 in the first

stage. Then, the score function of (6) can be written as:

S′(I, l,m) =
∑

ij∈E

(λ
mi,mj

ij · ξ(lti − ltj) + b
mi,mj

ij )+

∑

i∈V

(ωmi

i · φgi (I, li) + bmi

i ) .
(9)

Note that it is the same score as that of flexible mixtures

of parts proposed in [3]. The score S′(I, l,m) is a linear func-

tion of parameters γ = (ω, λ, b) , and all the general features

can be written as a corresponding vector Φ(I, l,m), with class

label y ∈ {1,−1}. Then the score function is:

S′(I, l,m) = γTΦ(I, l,m) . (10)

Linear Support Vector Machines is used to estimate γ by

solving the following optimization problem:

min
γ

1

2
γT γ + C

n∑

i=1

max(0, 1− yi · γ
TΦi) . (11)

After the parameter γ is learned, we want to determine the

parameters α and β in (5). We employ a simple grid search

method to find the values for α and β.

We adopt a semi-supervised method to train the color

model. Each video clip is divided into two parts. The first

small part is used for training, and the remaining for testing.

The instance-specific model is learned for each video re-

spectively. Based on the learned general pose model without

instance-specific features, poses with high confidence scores

are detected and estimated for training. The false positives

are manually removed from the training data. The instance-

specific features are modeled by a pixel-level color model.

The score of color model is written as:

scorea = µi · φ
s
i (I

t, lti) , (12)

where the µi is trained by logistic regression, with pixels of

body part i as positive samples and pixels of its background

as negative samples.

4. EXPERIMENTS

We report results on VideoPose2.0 dataset [6] and UCF S-

ports Action dataset [14]. We also utilize Image Parse dataset
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Table 1. Mean APK and mean PCK of keypoints of shoulder,

elbow and wrist on the VideoPose2.0 dataset.
Method Mean APK Mean PCK Time cost (s)

Yang et al. [3] 69.1 78.8 1.17

Us HoG+T. 69.6 79.9 1.22

Us HoG+C. 70.7 80.0 1.31

Us HoG+C.+T. 69.7 81.0 1.60

Sapp et al. [6] 82.4 87.7 340.76

[7] and the Buffy Stickmen dataset [5, 15] for training. Video-

Pose2.0 dataset consists of 44 clips, with 1286 frames. UCF

Sports Action dataset is a challenging dataset for action

recognition. We choose a few video clips as the testing set

and annotate them to evaluate full body pose estimation.

4.1. Evaluation

Percentage of correctly estimated keypoints (PCK) and Av-

erage Precision of Keypoints (APK) [3] are used as the e-

valuation measure. A candidate keypoint is considered to

be correctly estimated if it falls within α · max(h,w) pixels

of ground-truth keypoint, where h and w are the height and

width of the bounding box. APK establishes average preci-

sion for each keypoint separately. α is set to 0.2.

4.2. VideoPose2.0 database

VideoPose2.0 dataset is used to estimate upper body pose.

The general body model learned from HoG features is ap-

plied to estimate primary pose with confidence scores. Then

an instance-specific pixel-level color model is learned for

each keypoint by samples with high confidence for each

video sequence. The models are combined in the proposed

framework to estimate the final pose. In order to evaluate the

instance-specific model and the temporal model separately,

we report results of three approaches, “HoG+C.”, “HoG+T.”

and “HoG+C.+T.”, where “HoG” is the general body model,

“C.” is the pixel-level color model, and “T.” is the temporal

model. θ in (4) is set to 0.3 by training, and αi and βi in (5)

are set to 1 and 0.01, respectively.

The head can be localized with high accuracy, so we fo-

cus on parts of shoulder, elbow and wrist. The mean APK and

mean PCK are shown in Table 1. We compared our method

with those of Yang et al. [3] and Sapp et al. [6]. The compar-

ison was under the same condition. The image resolution is

370 × 330. Our methods achieve better results on both APK

and PCK than [3], and consume less time for each frame than

[6], as shown in Table 1.

4.3. UCF Sports Action dataset

The UCF Sports Action dataset is used to estimate full body

pose. The settings are the same as those of VideoPose2.0

dataset, except βi in (5) being 0.1. The mean APK of all

keypoints are shown in Table 2. “HoG+C.” reports the mean

Table 2. Mean APK of all the keypoints on the UCF Sports

Action dataset.
Method Mean APK

Yang et al. [3] 52.8

Us HoG+T. 54.3

Us HoG+C. 60.8

Us HoG+C.+T. 65.2

Fig. 2. Pose estimation on UCF Sports Action dataset. The

upper row shows the results by method [3], and the lower row

shows the results that obtained by our full model.

APK of 60.8%, in contrast to 52.8% by the method [3]. By

“HoG+T.”, mean APK 54.3% is reported. Both the color

model and the temporal model contribute to the performance

of pose estimation. The full model “HoG+C.+T.” achieves the

best results of mean APK 65.2%.

The example images are shown in Fig. 2. Due to the

instance-specific model, there are less false positives (key-

points of arm in the three left columns) by our method. As

well, the temporal model reduces the confusion of between-

frame estimation, as shown in the three right columns.

4.4. Analysis

The instance-specific appearance model helps to improve the

overall performance, as shown in Table 1 and Table 2. How-

ever, if the images fail to provide effective color information,

adding color model to the framework will weaken the whole

system. The strategy is to manipulate θ in (4). Another prob-

lem lies in the confidence score. In most of the cases, higher

confidence score means better pose estimation, but in the ex-

periments some false positives have high confidence.

5. CONCLUSION

We have presented a body model that incorporates appearance

model, deformation model, co-occurrence model and tempo-

ral model for pose estimation in videos. We analyze the de-

tailed effects of color model and temporal model, and demon-

strate that both models are effective to estimate body pose. N-

evertheless, there is still much space for improvement. More

effective instance-specific models are needed for a robust sys-

tem. Pose estimation for human body with self-occlusion is

still a challenging problem.
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